

MALIN BRIDGE PRIMARY SCHOOL CALCULATION GUIDE

REVIEWED MAY 2018

- * CLASSIFICATION
- * GLOSSARY
- * NAMES
- * PROPERTIES
- * MISCONCEPTIONS
- * INVESTIGATIONS
- * AREA & PERIMETER

20 SHAPES CAN BE CLASSIFIED INTO TWO MAIN GROUPS. THESE CAN BE SUBDIVIDED INTO FURTHER GROUPS AS SHOWN BELOW.

CONGRUENT	CONGRUENT SHAPES ARE IDENTICAL IN SHAPE AND SIZE.
SIDE	THE SIDES OF A 2D SHAPE ARE THE LINE SEGMENTS THAT CONNECT ITS VERTICES.
VERTEX/VERTICES	A CORNER OR A POINT. THIS WORD IS USED FOR 2D AND 3D SHAPES.
SYMMETRICAL	BOTH SIDES OF AN IMAGE ARE EXACTLY THE SAME.
ROTATION	WHEN A SHAPE TURNS.
TRANSLATION	WHEN A SHAPE SLIDES INTO A NEW POSITION.
REGULAR	A REGULAR POLYGON HAS ALL SIDES OF EQUAL LENGTH AND ALL ANGLES EQUAL.
IRREGULAR	A POLYGON WHICH HAS SIDES AND ANGLES OF DIFFERENT SIZES. (SEE ABOVE)
PARALLEL	PARALLEL LINES ARE TWO LINES THAT ARE ALWAYS THE SAME DISTANCE APART AND NEVER TOUCH.
PERPENDICULAR	PERPENDICULAR LINES ARE AT RIGHT ANGLES TO EACH OTHER.

DIAMETER	THE DISTANCE FROM ONE SIDE OF A CIRCLE TO THE OTHER PASSING THROUGH THE CENTRE. IT IS THE LONGEST CHORD OF A CIRCLE.
RADIUS	THE DISTANCE FROM THE CENTRE OF A CIRCLE TO ITS EDGE.
CHORD	A LINE THAT GOES FROM ONE POINT TO ANOTHER ON THE CIRCLE'S CIRCUMFERENCE.
CIRCUMFERENCE	THE DISTANCE AROUND THE OUTSIDE EDGE OF A CIRCLE.
ACUTE ANGLES	IS LESS THAN 900
RIGHT ANGLES	IS EQUAL TO EXACTLY 900
OBTUSE ANGLES	IS GREATER THAN 90°
STRAIGHT LINE	IS EQUAL TO EXACTLY 180 ⁰
REFLEX ANGLES	IS GREATER THAN 180°

NON- POLYGONS: SHAPES WITH LESS THAN 3 SIDES, WITH SOME OR ALL OF THE SIDES MADE UP OF A CURVED LINE.

	NAME	PROPERTIES	MISCONCEPTIONS	KEY LEARNING	AREAS FOR INVESTIGATION
POLYGONS	CIRCLE	 ⇒ ALL POINTS ARE EQUAL DISTANCE FROM THE ORIGIN (CENTRE) TO THE CIRCUMFER- ENCE. THIS DISTANCE IS THE RADIUS. ⇒ 1 CURVED EDGE (NOT SIDE) ⇒ INFINITE LINES OF SYMMETRY 	CIRCLES HAVE 1 SIDE.	CIRCLES HAVE ZERO (OR ARGUABLY INFINITE) Sides Because a side is a Straight line Joining vertices.	PROVE ITI A CIRCLE/SEMI-CIRCLE IS NOT A Polygon. A CIRCLE DOES NOT NECESSARILY HAVE ONE SIDE. YOU COULD ARGUE
N0N	SEMI-CIRCLE	⇒ 2 EDGES: 1 STRAIGHT AND ONE CURVED ⇒ 1 LINE OF SYMMETRY ⇒ = 180^{0}			IT WAS 0,1,2 OR AN INFINITE Number. so don't Aski

ALL TRIANGLES HAVE 3 STRAIGHT SIDES. THE ANGLES ON A TRIANGLE ALWAYS EQUAL 180".

	NAME	PROPERTIES	MISCONCEPTIONS	KEY LEARNING	AREAS FOR INVESTIGATION
LES	ISOSCELES TRIANGLE	 ⇒ AT LEAST 2 EQUAL LENGTH SIDES ⇒ AT LEAST 2 EQUAL SIZED ANGLES ⇒ 1 LINES OF SYMMETRY 	ISOSCELES TRIANGLES Have to have 2 Equal sides or Angles.	ISOSCELES TRIANGLES Can have more than 2 equal sides.	<u>HTTPS://NRICH.MATHS.ORG/2925</u> INVESTIGATING WAYS OF DRAWING TRIANGLES WITH DIFFERENT
ONS: TRIANG	SCALENE TRIANGLE	⇒ NO EQUAL LENGTH SIDES ⇒ NO EQUAL SIZED ANGLES ⇒ NO LINES OF SYMMETRY			ANGLES. AREA OF A TRIANGLE INVESTIGATION
97 J09	EQUILATERAL TRIANGLE	 ⇒ ALL 3 EQUAL LENGTH SIDES, THEREFORE ALL ANGLES ARE THE SAME. ⇒ ALL 3 EQUAL SIZED ANGLES, THEREFORE ALL ANGLES MEASURE 60⁰ ⇒ 3 LINES OF SYMMETRY 	AN EQUILATERAL TRIANGLE CANNOT BE ANY OTHER TYPE OF TRIANGLE.	AN EQUILATERAL Triangle is also an Isosceles triangle.	

QUADROLATERALS: SHAPES WITH 4 SIDES. THEY HAVE 4 VERTICES. ALL ANGLES IN A QUADRILATERAL ADD UP TO 360°.

	NAME	PROPERTIES	MISCONCEPTIONS	KEY LEARNING	AREAS FOR INVESTIGATION
QUADRILATERALS	SQUARE	 ⇒ TYPE OF RECTANGLE ⇒ 4 RIGHT ANGLES (90⁰) THEREFORE THE ADJACENT SIDES ARE PERPENDICULAR ⇒ 2 PAIRS OF PARALLEL LINES ⇒ 4 EQUAL LENGTH SIDES (CONGRUENT) THEREFORE IT ALSO HAS EQUAL LENGTH DI- AGONALS 	A SQUARE CAN ONLY BE Classified as a square.	IS A REGULAR QUADRILATERAL (THE ONLY REGULAR QUADRILATERAL IS A SQUARE) THIS IS ALSO A PARALLELOGRAM, RECTANGLE, RHOMBUS AND KITE. IT IS NOT A DIAMONDI	HOW COULD YOU CLASSIFY A SQUARE? PROVE ITI A SQUARE IS ALSO A RECTANGLEWHY? <u>HTTPS://NRICH.MATHS.ORG/2398</u>
POLY60NS:	RECTANGLE (OBLONG)	 ⇒ 4 RIGHT ANGLES (90⁰) THEREFORE THE ADJACENT SIDES ARE PERPENDICULAR ⇒ 2 PAIRS OF PARALLEL LINES ⇒ 2 PAIRS OF LINES OF EQUAL LENGTH (CONGRUENT) 	RECTANGLES ARE REGULAR BECAUSE THEY ARE Commonly seen. Oblong is not a Mathematical name for a Rectangle.	IS AN IRREGULAR QUADRILATERAL CAN ALSO BE DEFINED AS A PARALLELOGRAM WITH A RIGHT- ANGLE. IT IS NOT A RHOMBUS OR A KITE. ALSO KNOW AS AN OBLONG.	

QUADROLATERALS: SHAPES WITH 4 SIDES. THEY HAVE 4 VERTICES. ALL ANGLES IN A QUADRILATERAL ADD UP TO 360°.

	NAME	PROPERTIES	MISCONCEPTIONS	KEY LEARNING	AREAS FOR INVESTIGATION
DRILATERALS	RHOMBUS	 ⇒ 4 SIDES HAVE EQUAL LENGTH (CONGRUENT) ⇒ OPPOSITE SIDES ARE PARALLEL ⇒ OPPOSITE ANGLES ARE EQUAL (CONGRUENT) 	THIS CAN BE CALLED A DIAMOND	EVERY RHOMBUS IS A Parallelogram and a kite A Rhombus With Right Angles IS A Square A Diamond IS Not A Shape!	<u>HTTPS://NRICH.MATHS.ORG/504</u>
POLYGONS: QUA	KITE (CHEVRON, ARROWHEAD)	⇒ 2 PAIRS OF EQUAL ADJACENT SIDES ⇒ DIAGONALS ARE PERPENDICULAR	THERE IS ONLY ONE Type of Kite.	SQUARES AND RHOMBUSES Are Also Kites	<u>HTTPS://WRICH.MATHS.ORG/1058</u>
	PARALLELOGRAM	 ⇒ 2 PAIRS OF PARALLEL LINES ⇒ OPPOSITE SIDES ARE OF EQUAL LENGTH (CONGRUENT) ⇒ OPPOSITE ANGLES ARE EQUAL (CONGRUENT) 	THERE IS ONLY ONE Type of shape called A parallelogram.	A PARALLELOGRAM WITH ALL Equal sides, and all Equal Right Angles is a square	<u>HTTPS://NRICH.MATHS.ORG/504</u>

QUADROLATERALS: SHAPES WITH 4 SIDES. THEY HAVE 4 VERTICES. ALL ANGLES IN A QUADRILATERAL ADD UP TO 360°.

	NAME	PROPERTIES	MISCONCEPTIONS	KEY LEARNING	AREAS FOR INVESTIGATION
5	TRAPEZIUM	\Rightarrow ONLY 1 PAIR OF PARALLEL LINES			HTTPS://
QUADRILATERAL					<u>NRICH.MATHS.ORG/1058</u>
POLY60NS: C	TRAPEZOID	\Rightarrow NO PARALLEL SIDES			

	AREAS FOR INVESTIGATION
ĽS	<u>HTTPS://NRICH.MATHS.ORG/2927</u> — CLASSIFYING QUADRILATERALS CHALLENGE
FERA	<u>HTTPS://NRICH.MATHS.ORG/962</u> — DRAWING QUADRILATERALS CHALLENGE
SILA-	<u>HTTPS://NRICH.MATHS.ORG/6624</u> — CYCLIC QUADRILATERALS: DRAVING CHALLENGE
UAD	<u>HTTPS://NRICH.MATHS.ORG/6536</u> — CIRCLES INSIDE OR AROUND QUADRILATERALS
). ()	<u>HTTPS://NRICH.MATHS.ORG/1110</u> — QUADRILATERAL CHALLENGE USING COORDINATES
60NG	<u>HTTPS://NRICH.MATHS.ORG/2872</u> — GEOBOARD GAME MAKING QUADRILATERALS
POLY	<u>HTTPS://NRICH.MATHS.ORG/2793</u> — INVESTIGATING SHAPES FOR A RABBIT RUN

QUADRILATERALS: SHAPES WITH 4 SIDES. THEY HAVE 4 VERTICES. ALL ANGLES IN A QUADRILATERAL ADD UP TO 360⁰.

CHILDREN SHOULD BE FAMILIAR WITH REGULAR AND IRREGULAR REPRESENTATIONS OF POLYGONS FROM Y1-Y6

	NAME	PROPERTIES	KEY LEARNING	AREAS FOR INVESTIGATION
SUNS	PENTAGON	⇒ 5 SIDES ⇒ SUM OF THE INTERIOR ANGLES = 540° THIS IS BECAUSE A PENTAGON CAN BE SPLIT INTO 3 TRIANGLES EACH WITH A SUM OF 180° ⇒ THE INTERIOR ANGLES OF A REGULAR PENTAGON = $540^{\circ} \div 5$	PENTAGONS CAN BE Regular, irregular, Concave or convex.	HOW CAN YOU FIND THE SUM OF The INTERIOR ANGLES USING A TRIANGLE?
POL Y(HEXAGON	⇒ 6 SIDES ⇒ SUM OF THE INTERIOR ANGLES = 720° THIS IS BECAUSE A HEXAGON CAN BE SPLIT INTO 4 TRIANGLES EACH WITH A SUM OF 180° ⇒ THE INTERIOR ANGLES OF A REGULAR HEXAGON = $720^{\circ} \div 6$	HEXAGON'S CAN BE Regular, irregular, Concave or Convex.	

CHILDREN SHOULD BE FAMILIAR WITH REGULAR AND IRREGULAR REPRESENTATIONS OF POLYGONS FROM Y1-Y6

	NAME	PROPERTIES	KEY LEARNING	AREAS FOR INVESTIGATION
	HEPTAGON	 ⇒ 7 SIDES ⇒ SUM OF THE INTERIOR ANGLES = 900⁰ THIS IS BECAUSE A HEPTAGON CAN BE SPLIT INTO 5 TRIANGLES EACH WITH A SUM OF 180⁰ 	HEPTAGON'S CAN BE Regular, irregular, Concave or convex.	HOW CAN YOU FIND THE SUM OF The INTERIOR ANGLES USING A TRIANGLE?
, YGONS		\Rightarrow THE INTERIOR ANGLES OF A REGULAR HEXAGON = $900^{\circ} \div 7$	ης τλεηνός ζανή φε	
10d	UCTAGUN	⇒ 8 SIVES ⇒ SUM OF THE INTERIOR ANGLES = 1080° THIS IS BECAUSE AN OCTAGON CAN BE SPLIT INTO 6 TRIANGLES EACH WITH A SUM OF 180° ⇒ THE INTERIOR ANGLES OF A REGULAR OCTAGON = $1080^{\circ} \div 8$	REGULAR, IRREGULAR, CONCAVE OR CONVEX.	

CHILDREN SHOULD BE FAMILIAR WITH REGULAR AND IRREGULAR REPRESENTATIONS OF POLYGONS FROM Y1-Y6

	NAME	PROPERTIES	KEY LEARNING	AREAS FOR INVESTIGATION
	NONAGON	\Rightarrow 9 SIDES	NONAGON'S CAN BE	DRAW A REGULAR NONAGON.
SVD		⇒ SUM OF THE INTERIOR ANGLES = 1260" THIS IS BECAUSE A NONAGON CAN BE SPLIT INTO 7 TRIANGLES EACH WITH A SUM OF 180 ⁰ THE INTERIOR ANGLES OF A REGULAR NONAGON = 1260 ⁰ ÷ 9	REGULAR, IRREGULAR, Concave or convex.	SPLIT IT INTO 9 TRIANGLES. Can you work out the angles on each triangle?
boryc	DECAGON	⇒ 10 SIDES ⇒ SUM OF THE INTERIOR ANGLES = 1440° THIS IS BECAUSE A DECAGON CAN BE SPLIT INTO 8 TRIANGLES EACH WITH A SUM OF 180° ⇒ THE INTERIOR ANGLES OF A REGULAR NONAGON = 1440° ÷ 10	DECAGON'S CAN BE Regular, irregular, Concave or convex.	DRAW A REGULAR DECAGON. SPLIT IT INTO TRIANGLES. CAN YOU WORK OUT THE ANGLES ON EACH TRIANGLE?

ADDITIONAL INVESTIGATIONS - POLYGONS

	AREAS FOR INVESTIGATION
	<u>HTTPS://NRICH.MATHS.ORG/10368</u> — DRAV THE SHAPE TO MATCH THE CLUES
	<u>HTTPS://NRICH.MATHS.ORG/5568</u> — REASONING ABOUT SHAPE/EXPLORE SIMILARITIES AND DIFFERENCES
S	<u>https://wrich.maths.org/86</u> — making polygons systematically using a clock face
Y60N	<u>HTTPS://NRICH.MATHS.ORG/1058</u> — FINDING POLYGONS ON ISOMETRIC PAPER
POL	<u>HTTPS://NRICH.MATHS.ORG/11236</u> — MAXAGON: DRAWING INVESTIGATION (KS3)
	<u>HTTPS://NRICH.MATHS.ORG/6886</u> — FS/KS1 — IDENTIFYING SHAPES INVESTIGATION
	<u>HTTPS://NRICH.MATHS.ORG/7192</u> — FS/KS1 — RULES FOR SORTING SHAPES CHALLENGE
	<u>HTTPS://NRICH.MATHS.ORG/9925</u> — FS/KS1 — GUESS MY SHAPE GAME

AREA: CHILDREN SHOULD BE TAUGHT TO FIND THE AREA OF A PARALLELOGRAM RATHER THAN JUST A SQUARE OR RECTANGLE, BEFORE EXPLORING MORE COMPLEX SHAPES.

	NAME	FORMULA	KEY LEARNING	AREAS FOR INVESTIGATION
	PARALLELOGRAMS (THEREFORE SQUARES, RHOMBUS B RECTANGLES)	AREA = B X H	IF YOU TURN A PARALLELOGRAM INTO A RECTANGLE, THEN THE LEFT OVER TRIANGLES ARE CONGRUENT .	<u>HTTPS://NRICH.MATHS.ORG/48</u> <u>HTTPS://NRICH.MATHS.ORG/1045</u> <u>HTTPS://NRICH.MATHS.ORG/10344</u>
iEA	TRIANGLE	$AREA = \frac{B X H}{2}$		<u>HTTPS://WRICH.MATHS.URG/7280</u> <u>HTTPS://WRICH.MATHS.ORG/52</u> <u>HTTPS://WRICH.MATHS.ORG/2132</u>
AR	KITE	$AREA = \frac{D X D}{2}$	IF THE DIAGONALS ARE NOT GIVEN, PYTHAGORAS IS USED. (E. GRASPER Challenge)	
	TRAPEZIUM	$AREA = \frac{A + B}{2} H$		

PERIMETER: CHILDREN SHOULD BE TAUGHT TO FIND THE PERIMETER OF A PARALLELOGRAM RATHER THAN JUST A SQUARE OR RECTANGLE, BEFORE EXPLORING MORE COMPLEX SHAPES, INCLUDING COMPOSITE RECTILINEAR SHAPES..

	NAME	FO	RMULA	MISCONCEPTIONS	AREAS FOR INVESTIGATION
	PARALLELOGRAMS	PERIMETER = 2(A+B)	b		<u>HTTPS://NRICH.MATHS.ORG/1045</u>
	(THEREFORE		a h		<u>HTTPS://NRICH.MATHS.ORG/1880</u>
	SQUARES, KITES B RECTANGLES)				<u>HTTPS://NRICH.MATHS.ORG/10333</u>
ERIMETER	TRIANGLES	PERIMETER = A+B+C			
Δ	RHOMBUS	PERIMETER = 4A			
	TRAPEZIUM	PERIMETER = A+B+C+D	c h d b b b		

CLASSIFICATION

- MISCONCEPTIONS
- INVESTIGATIONS

3D SHAPES CAN BE SPLIT INTO POLYHEDRONS AND NON-POLYHEDRONS. POLYHEDRONS: 3D SHAPES WHERE ALL THE FACES ARE MADE OF POLYGONS. NON-POLYHEDRONS: 3D SHAPES WHERE NOT ALL THE FACES ARE MADE OF POLYGONS.

BASE	THE SOLID SURFACE AN OBJECT OR SHAPE STANDS ON. THE TOP IS ALSO CALLED A BASE IF IT IS PARALLEL TO THE BOTTOM!
EDGE	AN EDGE IS WHERE TWO FACES ON A 3D SHAPE MEET.
FACE	THE SURFACE OF A SOLID SHAPE.
NET	A PATTERN THAT CAN BE CUT AND FOLDED TO MAKE A 3D SHAPE.
CROSS SECTION	THE EXPOSED SHAPE/SURFACE WHEN YOU MAKE A CUT THROUGH A 3D SHAPE.
VERTEX (VERTICES)	A CORNER OR A POINT. THIS WORD IS USED FOR 2D AND 3D SHAPES.
CONVEX	HAVING A SHAPE OR LINE CURVED LIKE THE EXTERIOR OF A SPHERE.
CONCAVE	HAVING A SHAPE OR LINE CURVED LIKE THE INTERIOR OF A SPHERE.

POLYHEDRON	A 3D SHAPE WHOSE FACES ARE ALL POLYGONS.
PRISM	A POLYHEDRON THAT HAS TWO PARALLEL, CONGRUENT BASES MADE UP OF POLYGONS.
PYRAMID	A POLYHEDRON THAT HAS ONE BASE MADE UP OF A POLYGON. ALL OTHER FACES ARE TRIANGLES. (THERE IS A VAST ARRAY INC. SQUARED BASED PYRAMIDS, HEXAGONAL BASED PYRAMIDS ETC.)
TETRAHEDRON	ALSO KNOWN AS A TRIANGULAR PYRAMID. IT HAS A TRIANGULAR BASE AND THREE TRIANGLES ON THE SIDE CLOSING TO A POINT (VERTEX).

30 SHAPES: THREE-DIMENSIONAL SHAPES HAVING LENGTH, VIDTH (OR BREADTH) AND HEIGHT.

	NAME	PROPERTIES	KEY LEARNING	AREAS FOR INVESTIGATION
5	SPHERE	⇒ HAS ONE CURVED FACE ⇒ NOT A POLYHEDRON		
IL YAE DRONG	CYLINDER	⇒ TWO PARALLEL, CONGRUENT BASES THAT ARE CIRCLES⇒ NOT A POLYHEDRON		<u>HTTPS://NRICH.MATHS.ORG/7530 (EG</u> <u>IN KS2)</u>
D SHAPES: PO	CUBOID	⇒ IS A POLYHEDRON ⇒ 12 EDGES ⇒ 8 CORNERS ⇒ 6 FACES		<u>HTTPS://NRICH.MATHS.0RG/4920</u> <u>HTTPS://NRICH.MATHS.0RG/4919</u> <u>HTTPS://NRICH.MATHS.0RG/41</u> <u>HTTPS://NRICH.MATHS.0RG/57</u>
3	CUBE	⇒ IS A POLYHEDRON ⇒ 12 EDGES ⇒ 8 CORNERS ⇒ 6 FACES ALL MADE UP OF SQUARES	A CUBE IS A TYPE OF CUBOID.	<u>HTTPS://NRICH.MATHS.0RG/233</u> (KS1) <u>HTTPS://NRICH.MATHS.0RG/42</u> (KS1) <u>HTTPS://NRICH.MATHS.0RG/1140</u> (KS2)

30 SHAPES: THREE-DIMENSIONAL SHAPES HAVING LENGTH, VIDTH (OR BREADTH) AND HEIGHT.

	NAME	PROPERTIES	KEY LEARNING	AREAS FOR INVESTIGATION
	PYRAMID	 ⇒ A POLYHEDRON THAT HAS ONE BASE MADE UP OF ANY POLYGON. ⇒ ALL OTHER FACES ARE TRIANGLES. 		<u>HTTPS://WRICH.MATHS.ORG/5809</u> <u>HTTPS://WRICH.MATHS.ORG/672</u>
SHAPES	PRISM	 ⇒ IS A POLYHEDRON ⇒ ANY CROSS SECTION CREATES A CONGRUENT > VERSION OF ITSELF 		
<u>ر</u> ٤	CONE	 ⇒ ANY CROSS SECTION CREATES A SIMILAR VERSION OF ITSELF; IT WILL VARY IN SIZE. ⇒ NOT A POLYHEDRON ⇒ BASE IS A CIRCLE WITH A SURFACE THAT COMES TO A POINT CALLED A VERTEX. 		<u>HTTPS://WRICH.MATHS.ORG/2156</u>

	<u>HTTPS://NRICH.MATHS.ORG/2156</u> — EXPLORING VISUALISATION AND WHAT HAPPENS WHEN YOU TAKE A CROSS
	SECTION OF A 3D SHAPE
	<u>HTTPS://NRICH.MATHS.ORG/2350</u> — KS1 — SHADOV GUESSING GAME
	<u>HTTPS://NRICH.MATHS.ORG/1148</u> — KS1 AND KS2 — INVESTIGATION CUBES
	<u>HTTPS://NRICH.MATHS.ORG/7473</u> — ACTIVITY AIMED AT EARLY GRASPERS
۱ ر	<u>HTTPS://WRICH.MATHS.ORG/2343</u> — CUBE BUILDING INVESTIGATION
	<u>HTTPS://NRICH.MATHS.ORG/6307</u> — INVESTIGATING NETS
	<u>HTTPS://WRICH.MATHS.ORG/5943</u> — TRIANGULAR FACES INVESTIGATION

ANALYSIS OF PREVIOUS LEARNING HAS INDICATED THAT A UNIFIED APPROACH TO THE TEACHING OF GEOMETRY SHOULD AID CHILDREN'S UNDERSTANDING.

ONE OF THE BIGGEST BARRIERS TO SUCCESS IN GEOMETRY IS HAVING A CLEAR AND DEEP UNDERSTANDING OF TERMINOLOGY. THE INTENTION OF THIS DOCUMENT IS TO STREAMLINE THE TEACHING OF GEOMETRY - CLARIFYING MISCONCEPTIONS - SO THAT THE LANGUAGE AND METHODS USED IS CONSISTENT THROUGHOUT ALL YEAR GROUPS.

IT ALSO PROVIDES A VARIETY OF INVESTIGATIONS TO HELP SUPPORT THE TEACHING OF GEOMETRY, SO THAT CHILDREN BECOME CONFIDENT IN APPLYING THEIR KNOWLEDGE TO A RANGE OF CONTEXTS